Class: XI		INDIAN SCHOOL AL WADI AL KAB REVISION QUESTIONS-2022-23 Sub: MATHEMATICS (041)					Date: 20.02.2023	
Q.1.	The distance between $A(0,2,4)$ and $B(3,-2,-1)$ is___							
	A	50	B	$5 \sqrt{2}$	C	10	D	5
Q.2.	Given: For two finite sets A and $B, n(A-B)=10+x, n(B-A)=3 x$ and $n(A \cap B)=x+1$. If $n(A)$ $=n(B)$, then $n(A))$.							
	A	5		16	C	21	D	15
Q.3.	The roster form of the set $A=\left\{x: x=n^{2}+1, n \in N, n \leq 5\right\}$							
	A	$\{2,5,10,17,26\}$	B	$\{5,10,17,26\}$	$C\{2$, 10, 17, 26 ...\}	D $\{$, $5,10,17,26,37\}$
Q.4.	Which of the following are disjoint sets?							
	A Set of natural numbers, set of whole numbers				B	Set of integers, set of rational numbers		
	C	Set of whole numbers, set of prime numbers			D	Set of odd numbers, set of even numbers		
Q.5.	In a class 30 students play cricket and 20 students play tennis, and 10 students play both the games. If 40 students play neither cricket nor tennis, then the number of students in the class is \qquad .							
	A	110	B	100	C	90	D	80
Q6	If $A(0,2,4), B(3,-4,-1)$ and P is a point on AB such that $\mathrm{AP}: \mathrm{PB}=2: 1$, the P lies in ___ octant.							
	A	I	B	II	C	III	D	IV
Q7	If $f(x)=x^{100}+x^{99}+x^{98}+\cdots x^{2}+x+1$, then $f^{\prime}(1)=$							
	A	5050	B	5051	C	10000	D	100
Q8	$A=\{0,1,2,3,4\}, B=\{-2,-1,0,1, \ldots, 10\}$ and $R=\{(0 .-2),(1.0),(2,2),(3,4)(4,6)\}$. Which of the following is correct?							
	A	$\mathrm{R}=\{(x, y): y=x-2, x \in A, y \in B\}$			B	$R=\{(x, y): y=2 x+2, x \in A, y \epsilon B\}$		
	C	$R=\{(x, y): y=2 x-2, x \in A, y \in B\}$			D	$R=\{(x, y): x=2 y+2, x \in A, y \in B\}$		

Q29.	In a GP third term is 8 and $7^{\text {th }}$ term is 128 , then common ratio is							
	A	8	B		C	2	D	1
Q30. The length of latus rectum for the curve $4 x^{2}-y^{2}=4$ is	The length of latus rectum for the curve $4 x^{2}-y^{2}=4$ is							
	A	4	B	8	C	2	D	1
Q31. Which of the following equation represents a line passing through origin								
	A		$y+$		B		$\sqrt{3}$	
	C	$2(x$	1)		D		$\frac{y}{4}$	
Q32. For two distinct positive numbers a and b, which of the following is always true ?								
	A	$a+b>2 \sqrt{a b}$	B	$\frac{a+b}{2}>a b$	C	$\sqrt{a b}>\frac{a+b}{2}$	D	$\frac{2 a b}{a+b}>\sqrt{a b}$
Q33	If one geometric mean p and two arithmetic means q and r are inserted between two positive numbers, then $(2 q-r)(2 r-q)=$							
	A	p^{2}	B	$p q r$	C	$q r$	D	q^{2}
Q34	If the ratio of sums of n terms of two arithmetic progressions is $3 n-2: 2 n+1$, then the ratio of their $11^{\text {th }}$ term							
	A	31: 23	B	61:43	C	4:3	D	28: 21
Q35	The product of three consecutive terms of a GP is $\frac{27}{8}$, then the middle term is							
	A	$\frac{27}{8}$	B	$\frac{81}{16}$	C	$\frac{3}{2}$	D	$\frac{9}{4}$
Q36	In a GP, 3rd term is 24 and 6th term is 192, then the first term.							
	A	8	B	6	C	4	D	2
Q37	$\sin \frac{29 \pi}{6}+\cos \frac{31 \pi}{3}=$							
	A	2	B	1	C	-1	D	0

Q38	The range of the function $\|\sin x+1\|$							
	A	[1, 2]	B	[0, 2]	C	$[-1,1]$	D	R
Q39	$\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}=$$\qquad$							
	A	$\operatorname{Sin} 2 \mathrm{x}$	B	$\cos 2 x$	C	$\tan 2 x$	D	$\cot 2 x$
Q40	If $P(A)=\frac{1}{2}, P(B)=\frac{1}{3}$ and A and B are mutually exclusive, then $P(A U B)=$							
	A	$\frac{1}{6}$	B	$\frac{5}{6}$	C	$\frac{1}{2}$	D	$\frac{2}{3}$
Q41	The total number of permutations of the word 'ALGEBRA' is							
	A	2520	B	720	C	5040	D	3960
Q42.	The solution of the inequality $\|x+1\| \leq 3$ is							
	A	[0, 2]	B	[-4, 2]	C	$[-4,0]$	D	[1,4]
Q43	The coefficient of the middle term in the expansion of $(1+2 x)^{10}$ is							
	A	$10 C_{5}(2)^{5}$	B	$2 \times 10 C_{5}$	C	$10 C_{6}(2)^{6}$	D	$10 C_{4}(2)^{6}$
Q44.	If ($0,-1$) ($-3,-7$) and ($4, \mathrm{k}$) are collinear, $\mathrm{k}=$							
	A	9	B	6	C	7	D	-8
Q45.	Consider the random experiment of selecting a card from a pack of 52 cards. Let E be the event that the selected card is face card, F be the event that selected card is a black card, G be the event that the selected card is a king and H be the event that the selected card is an ace, then which of the events are mutually exclusive?							
	A	nd F	B	F and G	C	E and G	D	G and H

	ASSERTION-REASON BASED QUESTIONS In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices. A) Both A and R are true and R is the correct explanation of A. B) Both A and R are true but R is not the correct explanation of A . C) A is true but R is false. D) A is false but R is true
Q46.	(A) $\lim _{x \rightarrow 0} \frac{\sin 5 x}{x}=5$ (R) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
Q47.	(A) $\mathrm{P}(\mathrm{A})=0.6, \mathrm{P}(\mathrm{B})=0.5$ and $\mathrm{P}\left(\mathrm{A}^{\prime} \mathrm{UB}^{\prime}\right)=0.8$ then $\mathrm{P}(\mathrm{AUB})=0.8$ $(\mathrm{R}) \mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$
Q48	(A)Equation of circle with centre (0,0) and radius 4 units is $x^{2}+y^{2}=16$. (R) Diameter of a circle is twice its radius.
Q49.	(A) $2 x+3 y=1$ and $3 x-2 y=1$ represents perpendicular lines (R) If two lines are perpendicular, their slopes are equal.
Q50.	(A) $75^{\circ}=\frac{\pi}{12} \quad$ (R) π radian $=180^{\circ}$.

Answer Key

Q. No	Answer	Q No.	Ans	Q No.	Ans	Q. No	Ans	Q No	Ans
1	B	11	A	21	B	31	B	41	A
2	C	12	C	22	A	32	A	42	B
3	A	13	A	23	C	33	A	43	A
4	D	14	C	24	B	34	B	44	C
5	D	15	D	25	B	35	C	45	D
6	B	16	B	26	D	36	B	46	A
7	A	17	A	27	D	37	D	47	D
8	C	18	B	28	A	38	B	48	B
9	D	19	A	29	C	39	C	49	C
10	B	20	A	30	B	40	B	50	D

